Step 5A *Graphical Method.* We now show how to construct Table WE7-2.2. The derivative $(-dC_A/dt)$ is determined by calculating and plotting $(-\Delta C_A/\Delta t)$ as a function of time, *t*, and then using the equal-area differentiation technique (Appendix A.2) to determine $(-dC_A/dt)$ as a function of C_A . First, we calculate the ratio $(-\Delta C_A/\Delta t)$ from the first two columns of Table WE7-2.2; the result is written in the third column.

		$-rac{\Delta C_{ m A}}{\Delta t} imes 10^4$	$-\frac{dC_{\rm A}}{dt} imes 10^4$
t (min)	$C_{\rm A} \times 10^3 ({\rm mol/dm^3})$	(mol/dm ³ · min)	(mol/dm ³ · min)
0	50		3.0
FO	20	2.40†	1.97
50	38	> 1.48	1.80
100	30.6		1.2
150	25.6	> 1.00	0.8
200	22.2	> 0.68	0.5
200	22.2	> 0.54	0.5
250	19.5	0.42	0.47
300	17.4	0.42	
† A.C			

TABLE WE7-2.2 PROCESSED DATA

 $\frac{\Delta C_A}{\Delta t} = -\frac{C_{A2} - C_{A1}}{t_2 - t_1} = -\left(\frac{38 - 50}{50 - 0}\right) \times 10^{-3} = 0.24 \times 10^{-3} = 2.4 \times 10^{-4} (\text{mol/dm}^3 \cdot \text{min})$

Next, we use Table WE7-2.2 to plot the third column as a function of the first column in Figure WE7-1.1 [i.e., $(-\Delta C_A/\Delta t)$ vs. t]. Using equal-area differentiation, the value of $(-dC_A/dt)$ is read off the figure (represented by the arrows); then it is used to complete the fourth column of Table WE7-2.2.

The results to find $(-dC_A/dt)$ at each time, *t*, and concentration, C_A , are summarized in Table WE7-2.2.

We use numerical differentiation to help identify inconsistencies in the data.