We use numerical
differentiation
to help identify
inconsistencies in
the data.

Step 5A Graphical Method. We now show how to construct Table WE7-2.2. The derivative $\left(-d C_{\mathrm{A}} / d t\right)$ is determined by calculating and plotting $\left(-\Delta C_{A} / \Delta t\right)$ as a function of time, t, and then using the equal-area differentiation technique (Appendix A.2) to determine $\left(-d C_{A} / d t\right)$ as a function of C_{A}. First, we calculate the ratio $\left(-\Delta C_{A} / \Delta t\right)$ from the first two columns of Table WE7-2.2; the result is written in the third column.

Table We7-2.2 Processed Data

t (min)	$\mathrm{C}_{\mathrm{A}} \times 10^{3}\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$	$\begin{gathered} -\frac{\Delta C_{\mathrm{A}}}{\Delta t} \times 10^{4} \\ \left(\mathrm{~mol} / \mathrm{dm}^{3} \cdot \mathrm{~min}\right) \end{gathered}$	$\begin{gathered} -\frac{d C_{\mathrm{A}}}{d t} \times 10^{4} \\ \left(\mathrm{~mol} / \mathrm{dm}^{3} \cdot \mathrm{~min}\right) \end{gathered}$
0	50		3.0
50	38	2.40^{\dagger}	1.86
100	30.6		1.2
150	25.6	1.00	0.8
200	22.2	0.68	0.5
250	19.5	0.54	0.47
300	17.4	0.42	

${ }^{\dagger}-\frac{\Delta C_{\mathrm{A}}}{\Delta t}=-\frac{C_{\mathrm{A} 2}-C_{\mathrm{A} 1}}{\mathrm{t}_{2}-\mathrm{t}_{1}}=-\left(\frac{38-50}{50-0}\right) \times 10^{-3}=0.24 \times 10^{-3}=2.4 \times 10^{-4}\left(\mathrm{~mol} / \mathrm{dm}^{3} \cdot \mathrm{~min}\right)$

Next, we use Table WE7-2.2 to plot the third column as a function of the first column in Figure WE7-1.1 [i.e., $\left(-\Delta C_{A} / \Delta t\right)$ vs. t]. Using equal-area differentiation, the value of $\left(-d C_{\mathrm{A}} / d t\right)$ is read off the figure (represented by the arrows); then it is used to complete the fourth column of Table WE7-2.2.

Figure WE7-2.1 Graphical differentiation.

The results to find $\left(-d C_{A} / d t\right)$ at each time, t, and concentration, C_{A}, are summarized in Table WE7-2.2.

